\$50230E ATTACHMENT -Page 17 of 55 PRINT DATE: 05/12/

PAGE:

FAILURE MODES EFFECTS ANALYSIS (FMEA) NUMBER: P7-2B-CRW2-X

SUBSYSTEM NAME: SIDE HATCH JETTISON

RÉVISION: 09/12/88

CLASSIFICATION

1

NAME

PART NUMBER *** 👍 😘 *

Ĭ

: ENERGY TRANSFER SYSTEM (ETS)

MC325-0004

QUANTITY OF LIKE ITEMS: 2 REDUNDANT SYSTEMS

DESCRIPTION/FUNCTION: SHIELDED HILD DETONATING CORD (SMDC) AND CONFINED DETONATING CORD (CDC) LINES, TIME DELAY, THROUGH-BULKHEAD INITIATOR, TEES, UNIONS, ELBOW FITTINGS. ENERGY TRANSFER SYSTEM TRANSMITS DETONATING SIGNAL FROM

T-HANDLES TO VENT, COLLAR, HINGE SEVERANCE ASSEMBLIES AND HATCH JETTISC

ASSEMBLY.

REFERENCE DOCUMENTS: V070-553414

ATTACHMENT -Page 18 of 55

PAGE: 2

PRINT DATE: 09/12/

FAILURE MODES EFFECTS ANALYSIS (FMEA) NUMBER: P7-28-CRW2-X

SUMMARY

SUBSYSTEM NAME: SIDE HATCH JETTISON LRU : ENERGY TRANSFER SYSTEM (ETS) LRU PART #: MC325-0004

ITEM NAME: ENERGY TRANSFER SYSTEM (ETS)

FMEA NUMBER	ABBREVIATED FAILURE MODE DESCRIPTION	CIL CRIT RI: FLG FL
P7-28-CRW2-01	NO OUTPUT OR FAILS OFF	X : 1R2

PAGE: 3

PRINT DATE: 09/12/8

FAILURE MODES EFFECTS ANALYSIS (FMEA) NUMBER: P7-28-CRW2-01

REVISION:

09/12/88

SUBSYSTEM: SIDE HATCH JETTISON

LRU : ENERGY TRANSFER SYSTEM (ETS)

ITEM NAME: ENERGY TRANSFER SYSTEM (ETS)

CRITICALITY OF THIS

FAILURE MODE: 1R2

FAILURE MODE:

NO OUTPUT

MISSION PHASE:

- RTLS RETURN TO LAUNCH SITE
TAL TRANS ATLANTIC ABORT
AGA ABORT ONCE AROUND

DO DE-DRBIT

L5 LANDING SEQUENCE

VEHICLE/PAYLOAD/KIT EFFECTIVITY: 102 COLUMBIA

103 - DISCOVERY 104 ATLANTIS

: 105 NEW ORBITER

CAUSE:

CONTAMINATED PYRO MIXTURE, STRUCTURAL FAILURE, EXCESSIVE GAP IN EXPLOSIVE CORD, EXCESSIVE TRANSFER GAP.

CRITICALITY 1/1 DURING ANY MISSION PHASE OR ABORT? NO

REDUNDANCY SCREEN A) N/A

B) N/A

C) FAIL

PASS/FAIL RATIONALE:

A)

NOT APPLICABLE TO PYRO/MECHANICAL SYSTEM.

B)

NOT APPLICABLE TO PYRO/MECHANICAL SYSTEM.

C)

PROXIMITY OF ETS LINES OR T-HANDLE FAILURE ALLOWS POSSIBLE LOSS OF ALL REDUNDANCY DUE TO A SINGLE EVENT.

METHOD OF FAULT DETECTION:

NONE.

CORRECTING ACTION: NONE

NO CORRECTING ACTION IS POSSIBLE.

ATTACEMENT -Page 20 of 55

PAGE: 4 PRINT DATE: 09/12/5

FAILURE MODES EFFECTS ANALYSIS (FMEA) NUMBER: P7-2B-CRW2-01

- FAILURE EFFECTS -

(A) SUBSYSTEM:
LOSS OF ANY ETS COMPONENT RESULTS IN THE LOSS OF ONE REDUNDANT LEG OF
THE ETS SYSTEM. REMAINING LEG CAPABLE OF INITIATING ALL CREW ESCAPE
FUNCTIONS.

- (B) INTERFACING SUBSYSTEM(S):
 NONE FOR FIRST FAILURE. LOSS OF COLLAR, HINGE, TRUSTER AND VENT
 FUNCTION IF REDUNDANT ETS FAILS.
- (C) MISSION: NONE.
- (D) CREW, VEHICLE, AND ELEMENT(S):
 PROBABLE LOSS OF CREW IF REDUNDANT ETS FAILS. ON GROUND, OVERHEAD
 WINDOW COULD BE UTILIZED AS AN ALTERNATE MEANS OF EGRESS.

Criticality/
Required Fault Tolerance/Achieved Fault Tolerance: 1R/1/1

RATIONALE FOR CRITICALITY:
REDUNDANT ENERGY TRANSFER SYSTEMS.

TIME FROM FAILURE TO CRITICAL EFFECT: INMEDIATE

TIME FROM FAILURE OCCURRENCE TO DETECTION: IMMEDIATE

TIME FROM DETECTION TO COMPLETED CORRECTIVE ACTION: N/A

TIME REQUIRED TO IMPLEMENT CORRECTIVE ACTION LESS THAN TIME TO EFFECT? N/A

- DISPOSITION RATIONALE -

- (A) DESIGN: DUAL REDUNDANT ENERGY TRANSFER SYSTEMS. EITHER IS CAPABLE OF PERFORMENT FUNCTION.
- (B) TEST:
 QUAL TEST INCLUDES: SALT FOG, RANDON VIBRATION, THERMAL CYCLING.
 PRESSURE CYCLING, SHOCK, FLEXIBILITY (CDC), HUMIDITY, +350 DEGREES F/
 -65 DEGREES F AMBIENT FIRING, 8-FOOT DROP.

ACCEPTANCE TESTING INCLUDES: EXAMINATION OF PRODUCT, X-RAY, N-RAY,

PAGE: 5

ľ

PRINT DATE: 09/11/

FAILURE MODES EFFECTS ANALYSIS (FMEA) NUMBER: P7-2B-CRW2-01

HELIUM LEAK TEST, LOT ACCEPTANCE FIRING OF RANDOM SAMPLES.

SYSTEM TEST: ONE (1) INTEGRATED SYSTEM TEST (ETS (ELECTRICAL INITIATION), COLLAR, HINGE, IMPUSTER), PRIOR TO STS-26. FIVE (5) ADDITIONAL INTEGRATED SYSTEM TESTS PLANNED. RAYDOM SAMPLE FIRING TEST (QUAL TEST FIRINGS FULFILL REQUIREMENT FOR FIRST LOT).

(C) INSPECTION:

RECEIVING INSPECTION

RAW MATERIAL IS VERIFIED BY INSPECTION TO ASSURE SPECIFIC SHUTTLE REQUIREMENTS ARE SATISFIED.

CONTAMINATION CONTROL

CONTAMINATION CONTROL AND CORROSION PROTECTION PROCESSES VERIFIED BY INSPECTION.

ASSEMBLY/INSTALLATION OPERATION VERIFIED BY MIPS ON SHOP TRAVELER.

NONDESTRUCTIVE EVALUATION

PARTS ARE X-RAYED AND N-RAYED TO VERIFY CORRECT ASSEMBLY AND PRESENCE C ALL DETAIL PARTS AND EXPLOSIVES. X-RAYS AND N-RAYS ARE REVIEWED BY VENDOR, DCAS, NASA QUALITY AND ENGINEERING. ALL CRITICAL DIMENSIONS ARE INSPECTED.

TEST

ATP IS VERIFIED BY INSPECTION.

CRITICAL PROCESSES

CRITICAL PROCESSES SUCH AS WELDING, PLATING, HEAT TREATING, PASSIVATION AND ANODIZING ARE VERIFIED BY INSPECTION.

STORAGE

STORAGE ENVIRONMENT VERIFIED BY INSPECTION.

HANDLING AND PACKAGING

HANDLING AND PACKAGING IS VERIFIED BY INSPECTION FER THE REQUIREMENTS BEINSPECTION FOR THE REQUIREMENTS OF APPLICABLE SPECIFICATIONS.

(D) PAILURE RISTORY:

NO FAILURE HISTORY.

(E) OPERATIONAL USE:

ON GROUND, OVERHEAD EGRESS WINDOW COULD BE UTILIZED AS AN ALTERNATE MEANS OF EGRESS.

REMARKS:	
----------	--

ATTACHMENT -Fage 22 of 55

PAGE:

PRINT DATE: 09/12/8

FAILURE MODES EFFECTS ANALYSIS (FMEA) NUMBER: P7-28-CRW2-01

RELIABILITY ENGINEERING: C. FERRARELLA

DESIGN ENGINEERING : R. YEE

QUALITY ENGINEERING

NASA RELIABILITY

NASA DESIGN

NASA QUALITY ASSURANCE :

: E. GUTIERREZ

გ ე/≔/≌

9-27-58 جيجه